
Moxin
A Pure Rust Explorer for Open Source LLMs

Jorge Bejar
CTO at WyeWorks

MOXIN
A Pure Rust Explorer
for Open Source LLMs

May 6th, 2024

Hydai Tai
Hung-Ying, Tai (hydai)
WasmEdge Maintainer

Agenda

● What is Moxin?

● Moxin implementation

● Demo

● Final notes

What is Moxin?

● An application to explore and experiment with open source LLMs

● Run LLMs in your own machine!

● Users can try out different prompts to pick the most appropriate model

for their needs

● We just have an MVP… still growing

● An application to explore and experiment with open source LLMs

● Run LLMs in your own machine!

● Users can try out different prompts to pick the most appropriate model

for their needs

● We just have an MVP… still growing

● It’s Open Source!

https://github.com/project-robius/moxin

https://github.com/project-robius/moxin

ARCHITECTURE

Why Rust?

● Performance, safety, cross platform compilation

● Interoperability

● Productivity

● Availability of crates for many problems and domains

We will discuss later: why Rust for the frontend?

Why Rust?

● Performance, safety, cross platform compilation

● Interoperability

● Productivity

Cited from:
https://waszczyk.com/rustic-introduction-into-substrate-framework-syntax-and-d
esign-patterns

Moxin Backend

Hung-Ying, Tai (hydai)
WasmEdge Maintainer

Moxin Backend - The Rust Part

● Main Loop:
○ Load the pre-built Wasm file (chat_ui.wasm, a black box, will explain later)
○ Retrieve a request from the front end
○ Dispatch the request into command handler

● Command Handler:
○ Model Management:

■ List and Search Models
■ Download, Pause, Cancel, and Delete Models

○ Model Interaction:
■ Load and Eject Models
■ Run and Stop the Chat Completion
■ Start and Halt a Local LLM Server (TODO)

● LoadModel:
○ Create a Model instance with the given model
○ Spawn a thread to run the Wasm Application with the given configuration
○ In the spawned thread:

■ Use WasmEdge SDK to create a standalone Wasm runner
■ Setup the configuration from the request:

● Read `context size(n_ctx)`, `gpu layers(n_gpu_layers)`, `prompt template` and more
options from the given information

● Set the corresponding options into the Wasm runner
■ Register three special backend host functions into the Wasm runner to handle the IO

● get_input: Allow wasm app to receive input from the backend
● push_token: Allow wasm app to send output to the backend
● return_token_error: When error occurs, use this function to return the error code instead

of putting an output token.

○ Enter the entry point of the Wasm application.

Moxin Backend - The Wasm Part

● The black box Wasm is modified from llamaedge/chat:
https://github.com/L-jasmine/LlamaEdge/tree/chat_ui/chat_ui

● It’s a command line interface application.
● That’s why we need to hook the IO with the previous 3 host functions.
● The execution flow:

○ Parse the options and initialize the model
○ Enter the main loop

■ Call `get_input` to retrieve the input from the backend
■ Build the prompt with input and prompt template
■ Run the compute function to ask model to generate tokens
■ When the token is generated, call `push_token` to return to the backend
■ If an error happens during the computation, call `return_token_error` instead

https://github.com/L-jasmine/LlamaEdge/tree/chat_ui/chat_ui

Moxin Frontend

Applications development with Rust?

● Ecosystem is a bit rough yet :(
○ Not clear what tools are production-ready or recommended

○ Lack of examples and proper documentation

○ Crates with overlapping features, hard to integrate them

Applications development with Rust?

● Ecosystem is a bit rough yet

● … but there is hope!

https://robius.rs

https://robius.rs

Makepad framework

● It’s a framework including a collection of highly-performant widgets and

minimal, zero/low-overhead platform abstractions.

● Unique approach for UI development combining retained and immediate

mode.

● Rapid development cycle: very fast compile times due to a custom

minimal dependency set, plus a custom DSL for live design that enables

hot reloading of UI elements.

FRONTEND - MAKEPAD

Communication frontend - backend

● Relies on std::sync::mpsc::channel

● Works well for synchronous and asynchronous commands

● Designed to be re-implemented for distributed or web applications
○ The Makepad frontend could also be deployed in other platforms

without much rework.

A practical case with Moxin

CLOSING NOTES

What is in the Roadmap?

● Go beyond plain-text conversations (image, video, charts)
○ Get the most from Makepad!

● Integrate with cloud APIs

● Agents orchestration to accomplish complex tasks

● Multiplatform application

Our long term goals

● We aim to build an explorer for the AI.

● Engage with the social community.

● Fully integrate with the federated Matrix ecosystem

https://github.com/project-robius/moxin

https://github.com/project-robius/moxin

ThanK
YOU

More information available at:
 @jmbejar
 jorge-bejar

