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Discover, download, and run local LLMs
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An application to explore and experiment with open source LLMs

Run LLMs in your own machine!

Users can try out different prompts to pick the most appropriate model
for their needs

We just have an MVP... still growing






GOSIM Erore

An application to explore and experiment with open source LLMs

Run LLMs in your own machine!

Users can try out different prompts to pick the most appropriate model
for their needs

We just have an MVP... still growing

It’s Open Source!

https://qithub.com/project-robius/moxin



https://github.com/project-robius/moxin
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WHY/RUST?
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Why Rust?
Performance, safety, cross platform compilation

Interoperability
Productivity

Availability of crates for many problems and domains

We will discuss later: why Rust for the frontend?
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In other languages simple things are
easy and complex things are possible,

in Rust simple things are possible and
complex things are EASY.

Cited from:
https://waszczyk.com/rustic-introduction-into-substrate-framework-syntax-and-d
esign-patterns
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MOXIN BACKEND

Hung-Ying, Tai (hydai)
WasmEdge Maintainer
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Moxin Backend - The Rust Part
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e Main Loop:
o Load the pre-built Wasm file (chat_ui.wasm, a black box, will explain later)
o Retrieve a request from the front end
o Dispatch the request into command handler

e Command Handler:

o Model Management:

m List and Search Models

m Download, Pause, Cancel, and Delete Models
o Model Interaction:

m Load and Eject Models

m Run and Stop the Chat Completion
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e LoadModel:

o Create a Model instance with the given model
o Spawn a thread to run the Wasm Application with the given configuration

o Inthe spawned thread:
m Use WasmEdge SDK to create a standalone Wasm runner
m Setup the configuration from the request:
® Read ‘context size(n_ctx)’, ‘gpu layers(n_gpu_layers)’, ‘prompt template” and more
options from the given information
e Set the corresponding options into the Wasm runner
m Register three special backend host functions into the Wasm runner to handle the 10
e get_input: Allow wasm app to receive input from the backend
e push_token: Allow wasm app to send output to the backend
e return_token_error: When error occurs, use this function to return the error code instead
of putting an output token.

o Enter the entry point of the Wasm application.
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Moxin Backend - The Wasm Part
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The black box Wasm is modified from llamaedge/chat:
https://github.com/L-jasmine/LlamaEdge/tree/chat_ui/chat_ui

It’s a command line interface application.

That’s why we need to hook the 10 with the previous 3 host functions.

The execution flow:
o Parse the options and initialize the model

o Enter the main loop
m Call ‘get_input to retrieve the input from the backend
Build the prompt with input and prompt template
Run the compute function to ask model to generate tokens
When the token is generated, call ‘push_token’ to return to the backend
If an error happens during the computation, call ‘return_token_error instead



https://github.com/L-jasmine/LlamaEdge/tree/chat_ui/chat_ui
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Applications development with Rust?

® Ecosystem is a bit rough yet :(
o Not clear what tools are production-ready or recommended
o Lack of examples and proper documentation
o Crates with overlapping features, hard to integrate them
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Applications development with Rust?

® Ecosystem is a bit rough yet
e ... butthereis hope!

ROBIUS
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Project Robius

Community for Multi-platform Application Development in Rust

A 201 followers @ https://robius.rs

README.md

Robius: Multi-Platform App Dev in Rust
[ v Robius Book | view [Code Examples JRSMMGNTonIY > I

Robius is a fully open-source, decentralized, community-driven effort to enable multi-platform application development in Rust.

g group: a welcoming, public space to collect and discuss resources

ce in Rust.

ntributing?
Robius space.

. We believe that the Rust programming language is the right choice for the next generation of application developers, but that the


https://robius.rs

&% makepad

Blazingly Fast
Cross Platform

Rust Uls

Makepad is an in-development shader
based live designable OSS UI-Framework
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Makepad framework

e |[t's a framework including a collection of highly-performant widgets and
minimal, zero/low-overhead platform abstractions.

® Unique approach for Ul development combining retained and immediate
mode.

e Rapid development cycle: very fast compile times due to a custom
minimal dependency set, plus a custom DSL for live design that enables
hot reloading of Ul elements.



imgflip.com
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Communication frontend - backend

® Reliesonstd::sync::mpsc::channel
® Works well for synchronous and asynchronous commands

® Designed to be re-implemented for distributed or web applications

o The Makepad frontend could also be deployed in other platforms
without much rework.
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A practical case with Moxin
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What is in the Roadmap?

® Go beyond plain-text conversations (image, video, charts)
o Get the most from Makepad!

® Integrate with cloud APIs
® Agents orchestration to accomplish complex tasks
e Multiplatform application
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Our long term goals
e \We aim to build an explorer for the Al.

e Engage with the social community.
e Fully integrate with the federated Matrix ecosystem



25 github.com/project-robius/moxin W

No packages published
Publish your first package

[ README 5[ Apache-2.0 license Va

Contributors 8

Moxin: a Rust Al LLM client built atop Robius O00E

Moxin is an Al LLM client written in Rust to demonstrate the functionality of the Robius, a framework for multi-
platform application development in Rust.
L ) X i Languages
1. Moxin is just getting started and is not yet fully functional.
The following table shows which host systems can currently be used to build Robrix for which target platforms. Rust 100.0%
il ? ?
Host OS Target Platform Builds? Runs? Suggested workflows
macOS macOS V] (V] Based on your tech stack
Linux ubuntu(x86_64-unknown-linux-gnu) ?
® Rust
T % Build and test a Rust |
Building and Running cargo
First, install Rust.
3 SLSA Generic
Then, install the required WasmEdge WASM runtime: generator

c NIRRT

https://qithub.com/project-robius/moxin

- GET INVOLVED


https://github.com/project-robius/moxin

T More information available at:
HANK ~ @jmbejar
Yuu in jorge'bejar
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